AIモデル変換ツール:Caffe編
環境構築
環境構築手順はこちらをご参照ください。
サンプルモデルの変換
ディレクトリを移動します。
$ cd /home/cvtool/conversion/caffe
サンプルモデルをダウンロードします。
$ wget https://github.com/shicai/MobileNet-Caffe/raw/master/mobilenet.caffemodel
$ mv mobilenet.caffemodel sample/mobilenet_v1/models
モデル変換を実行します。
$ ./caffe_conversion.sh setting.conf
変換後のモデルは以下のディレクトリに出力されます。
ambaCV2Xカメラ用のモデル
${OUTPUT_DIR}/${NET_NAME}/${PARSER_OPTION}/[モデル名]
ambaCV5Xカメラ用のモデル
${OUTPUT_DIR}/${NET_NAME}_ambaCV5X/${PARSER_OPTION}/[モデル名]
モデルを変換する
/home/cvtool/conversion/caffe
をコピーしてください。
setting.conf を、変換するモデルに合わせて変更してください。
モデル変換を実行します。
setting.conf仕様
v1.19 まで setting.conf にあった CAVALRY_VERを、v1.20 から削除しています。
v1.19 以前の setting.conf を v1.20以降の cvtool で使用する際は、setting.conf から CAVALRY_VER を削除してください。
NET_NAME:ネットワーク名
任意の名前を設定できます。
DEPLOY_PROTOTXT:deploy用prototxtファイルへのパス
MODEL_DIR:caffemodelが格納されたディレクトリ
ディレクトリ下の全てのモデルに対して、変換処理を実行します。
DRA_IMAGE_DIR:量子化の最適化処理で使用する、画像ファイルが格納されたディレクトリ
学習に使った画像を格納してください。100~200枚が推奨枚数です。
画像フォーマットはJPEGやPNGなど、OpenCVで対応しているものです。
任意サイズの画像を使用可能です。
OUTPUT_DIR:変換後のデータ出力先ディレクトリ
PARSER_OPTION:量子化モード
FIX8/FIX16/MIX(FIX8/FIX16混合)から選択します。
IN_DATA_CHANNEL:モデルの入力画像チャネル数
N_DATA_WIDTH:モデルの入力画像サイズ(幅)
IN_DATA_HEIGHT:モデルの入力画像サイズ(高さ)
IN_MEAN:入力画像の正規化パラメータ(平均値)
数値またはbinaryprotoファイルでの設定が可能です。
数値で設定する場合には、以下のように”,”の間に空白を入れないようにしてください。
IN_MEAN=127.5,127.5,127.5binaryprotoファイルで設定する場合には、以下のようにファイルへのパスを設定してください。
IN_MEAN=./model/mean.binaryproto
IN_SCALE:入力画像の正規化パラメータ(スケール)
チャネルごとに異なる設定値にする場合は、”,”で値を区切ってください。”,”の間には空白を入れないようにしてください。
IS_BGR:入力画像のフォーマット(RGB or BGR)
IN_LAYER:ネットワークの入力レイヤ名
変換後のモデルでは入力レイヤ名が “${IN_LAYER}_0” に変わります。
したがって追加アプリ上で変換後のモデルを動かす際も、モデルの入力レイヤとして “_0” を付ける必要があります。以下の記号が入力レイヤ名に含まれている場合、正常に変換できない可能性があります。
: | ; , ‘
OUT_LAYER:ネットワークの出力レイヤ名
複数指定する場合は”,”で区切ってください
以下の記号が出力レイヤ名に含まれている場合、正常に変換できない可能性があります。
: | ; , ‘
PREPRO:前処理スクリプトパス(python)
スクリプトの作り方は“/home/cvtool/common/prepro.py”を参照してください。
PREPRO_ARG:前処理スクリプトの引数
IN_DATA_FILEFORMAT:入力データのフォーマット
例:uint8->0,0,0,0, float32->1,2,0,7, float16->1,1,0,4)
IN_DATA_FILEFORMAT を”0,0,0,0”から変更した場合はPREPROの設定が必要になります。
IN_DATA_TRANSPOSE:入力データに対してTRANSPOSE を行う場合指定する
deploy用のprototxtでinputレイヤが定義されていない場合は、以下のようにレイヤを追加してください。