Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

TensorFlow Op Type

TensorFlow Function

Comments

MatMul, BatchMatMulV2

tf.linalg.matmul

tf.matmul

adjoint_a, adjoint_b, a_is_sparse, b_is_sparse not supported

AvgPool

tf.nn.avg_pool

 

MaxPool

tf.nn.max_pool

 

Conv2D

tf.nn.conv2d

Filter has to be constant

DepthwiseConv2dNative

tf.nn.depthwise_conv2d

 

Conv2DBackpropInput

tf.nn.conv2d_backprop_input

Assumptions:

  1. ignoring input_sizes tensor

  2. order of tensors

Conv2DBackpropFilter

tf.nn.conv2d_backprop_filter

Assumptions:

  1. ignoring input_sizes tensor

  2. order of tensors

LRN

tf.nn.local_response_normalization

 

Softmax

tf.nn.softmax

 

Reshape

tf.reshape

Pre- and Post- transpose ops are added in case reshape involves depth dim

Sigmoid

tf.sigmoid

 

Tanh

tf.nn.tanh

 

 

tf.nn.atrous_conv2d

Expands to SpaceToBatchND-> Conv2D -> BatchToSpaceND

SpaceToBatchND

tf.space_to_batch_nd

[SpaceToBatchND -> Conv2D -> BatchToSpaceND] works

BatchToSpaceND

tf.batch_to_space_nd

[SpaceToBatchND -> Conv2D -> BatchToSpaceND] works

Const

tf.constant

 

Placeholder

tf.placeholder

 

Max

tf.reduce_max

keepdims supported using transpose node

Min

tf.reduce_min

keepdims supported using transpose node

Sum

tf.reduce_sum

keepdims supported using transpose node

Prod

tf.reduce_prod

keepdims supported using transpose node

Mean

tf.reduce_mean

keepdims supported using transpose node

Squeeze

tf.squeeze

axis parameter not supported

BatchNorm

tf.nn.batch_normalization

 

FusedBatchNorm

tf.nn.fused_batch_norm

 

Relu

tf.nn.relu

 

Elu

tf.nn.elu

 

Relu6

tf.nn.relu6

 

LeakyRelu

tf.nn.leaky_relu

 

Concat

tf.concat

 

ConcatV2

tf.concatv2

 

Add

tf.add

 

BiasAdd

tf.nn.bias_add

 

AddN

tf.addn

 

Sub

tf.subtract

 

Abs

tf.abs

 

Neg

tf.negative

 

Ceil

tf.ceil

 

Floor

tf.floor

 

Exp

tf.exp

 

Log

tf.log

 

Reciprocal

tf.reciprocal

 

Pow

tf.pow

 

Mul

tf.multiply

 

Square

tf.square

 

Sqrt

tf.sqrt

 

Rsqrt

tf.rqrt

 

Div

tf.div

 

TrueDiv

tf.truediv

 

RealDiv

tf.realdiv

 

Divide

tf.divide

 

Maximum

tf.maximum

 

Minimum

tf.minimum

 

Pad, MirrorPad

tf.pad

Limited support.
VP can do zero replicate (CONSTANT with const value 0) or edge pixel replicate (SYMMETRIC with pad length 1). Data might not match in other modes.

Transpose

tf.transpose

conjugate = True not supported

ResizeBilinear

tf.image.resize_bilinear

 

ResizeNearestNeighbor

tf.image.resize_nearest_neighbor

align_corners = True not supported half_center_pixels = True not supported

Resamp

tf.contrib.resampler

 

Slice

tf.slice

begin and size dtype int64 not supported

StridedSlice

tf.strided_slice

  • ellipsis_mask and new_axis_mask not supported

  • begin and strides cannot have negative indices

Split, SplitV

tf.split

only "num_split" attr is supported

ArgMin

tf.argmin

 

ArgMax

tf.argmax

 

OneHot

tf.one_hot

 

SquaredDifference

tf.squared_difference

 

Pack

tf.stack

 

Unpack

tf.unstack

 

Range

tf.range

 

ClipByValue

tf.clip_by_value

 

ScatterND

tf.scatter_nd

Duplicate indices values will be overwritten to the last index value.

Gather

tf.gather

Only axis = 0 is supported

 

tf.nn.l2_normalize

Expands to math operators

TopKV2

tf.math.top_k

 

Cast

tf.dtypes.saturate_cast

tf.cast might fail.
Use only saturate cast

ZerosLike

tf.zeros_like

 

OnesLike

tf.ones_like

 

Tile

tf.tile

 

Softplus

tf.math.softplus

 

Identity

tf.identity

 

ExpandDims

tf.expand_dims

 

FakeQuantWithMinMaxArgs

tf.fake_quant_with_min_max_args

 

FakeQuantWithMinMaxVars

tf.fake_quant_with_min_max_vars

 

Shape

tf.Shape

 

CheckNumerics

tf.check_numerics

 

NoOp

tf.no_op

 

Assert

tf.Assert

 

Mish

 

 

Swish

 

 

Sign

tf.math.sign

 

Level Curve

Custom op

 

FloorMod

tf.math.floormod

Tensorflow Lite

Support version

...